Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome.

نویسندگان

  • Jean-François Ménétret
  • Ramanujan S Hegde
  • Mike Aguiar
  • Steven P Gygi
  • Eunyong Park
  • Tom A Rapoport
  • Christopher W Akey
چکیده

During cotranslational protein translocation, the ribosome associates with a membrane channel, formed by the Sec61 complex, and recruits the translocon-associated protein complex (TRAP). Here we report the structure of a ribosome-channel complex from mammalian endoplasmic reticulum in which the channel has been visualized at 11 A resolution. In this complex, single copies of Sec61 and TRAP associate with a nontranslating ribosome and this stoichiometry was verified by quantitative mass spectrometry. A bilayer-like density surrounds the channel and can be attributed to lipid and detergent. The crystal structure of an archaeal homolog of the Sec61 complex was then docked into the map. In this model, two cytoplasmic loops of Sec61 may interact with RNA helices H6, H7, and H50, while the central pore is located below the ribosome tunnel exit. Hence, this copy of Sec61 is positioned to capture and translocate the nascent chain. Finally, we show that mammalian and bacterial ribosome-channel complexes have similar architectures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Architecture of the ribosome-channel complex derived from native membranes.

The mammalian Sec61 complex forms a protein translocation channel whose function depends upon its interaction with the ribosome and with membrane proteins of the endoplasmic reticulum (ER). To study these interactions, we determined structures of "native" ribosome-channel complexes derived from ER membranes. We find that the ribosome is linked to the channel by seven connections, but the juncti...

متن کامل

Role of the Cytoplasmic Segments of Sec61α in the Ribosome-Binding and Translocation-Promoting Activities of the Sec61 Complex

The Sec61 complex performs a dual function in protein translocation across the RER, serving as both the high affinity ribosome receptor and the translocation channel. To define regions of the Sec61 complex that are involved in ribosome binding and translocation promotion, ribosome-stripped microsomes were subjected to limited digestions using proteases with different cleavage specificities. Pro...

متن کامل

Structure of the Mammalian Ribosome-Sec61 Complex to 3.4 Å Resolution

Cotranslational protein translocation is a universally conserved process for secretory and membrane protein biosynthesis. Nascent polypeptides emerging from a translating ribosome are either transported across or inserted into the membrane via the ribosome-bound Sec61 channel. Here, we report structures of a mammalian ribosome-Sec61 complex in both idle and translating states, determined to 3.4...

متن کامل

Dual recognition of the ribosome and the signal recognition particle by the SRP receptor during protein targeting to the endoplasmic reticulum

We have analyzed the interactions between the signal recognition particle (SRP), the SRP receptor (SR), and the ribosome using GTPase assays, biosensor experiments, and ribosome binding assays. Possible mechanisms that could contribute to an enhanced affinity between the SR and the SRP-ribosome nascent chain complex to promote protein translocation under physiological ionic strength conditions ...

متن کامل

Structure of the native Sec61 protein-conducting channel

In mammalian cells, secretory and membrane proteins are translocated across or inserted into the endoplasmic reticulum (ER) membrane by the universally conserved protein-conducting channel Sec61, which has been structurally studied in isolated, detergent-solubilized states. Here we structurally and functionally characterize native, non-solubilized ribosome-Sec61 complexes on rough ER vesicles u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Structure

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2008